
Neural Bidirectional Texture Function
Compression and Rendering

Luca Quartesan
luca@traverseresearch.nl
Traverse Research BV
Breda, Netherlands

Carlos Pereira Santos
santos.c@buas.nl

Breda University of Applied Sciences
Breda, Netherlands

Figure 1: Examples of neural BTF materials from UBO2014 rendered using Mitusba 2, trained with configuration 4. From left to
right: fabric05, leather06, leather10, wood08, wallpaper05, carpet06.

ABSTRACT
The recent success of Machine Learning encouraged research using
artificial neural networks (NNs) in computer graphics. A good
example is the bidirectional texture function (BTF), a data-driven
representation of surface materials that can encapsulate complex
behaviors that would otherwise be too expensive to calculate for
real-time applications, such as self-shadowing and interreflections.

We propose two changes to the state-of-the-art using neural
networks for BTFs, specifically NeuMIP. These changes, suggested
by recent work in neural scene representation and rendering, aim
to improve baseline quality, memory footprint, and performance.
We conduct an ablation study to evaluate the impact of each change.
We test both synthetic and real data, and provide a working imple-
mentation within the Mitsuba 2 rendering framework.

Our results show that our method outperforms the baseline in
all these metrics and that neural BTF is part of the broader field of
neural scene representation.

Project website: https://traverse-research.github.io/NeuBTF/.

CCS CONCEPTS
•Computingmethodologies→Rendering;Machine learning;
Computer vision.

©2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in SIGGRAPH Asia 2022 Posters
https://doi.org/10.1145/3550082.3564188.
SA ’22 Posters, December 06-09, 2022, Daegu, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9462-8/22/12.
https://doi.org/10.1145/3550082.3564188

KEYWORDS
neural networks, bidirectional texture function, neural representa-
tion, neural materials

1 INTRODUCTION
The BTF [Dana et al. 1999] is a material model that models how a
planar surface changes its appearance when illuminated and viewed
from different directions. It is parameterized by surface position
𝑝𝑢𝑣 , light 𝜔𝑖 and view 𝜔𝑜 directions 𝑓 (𝑝𝑢𝑣, 𝜔𝑖 , 𝜔𝑜 ). A BTF can be
collected from captures of amaterial from a combination of light and
view directions. Thus, it can capture a wide range of complex effects,
including parallaxing, self-shadowing, and subsurface scattering.
Recently, several studies have explored the possibility of using NNs
to compress and interpolate BTF data [Kuznetsov et al. 2021; Rainer
et al. 2020, 2019].

The current state-of-the-art in using NNs for BTFs is NeuMIP
[Kuznetsov et al. 2021]. NeuMIP consists of two modules: offset and
decoder. Both modules are composed of a neural texture pyramid,
similar to a mipmap, and a small multi-layer perceptron (MLP). For
each material, the neural texture pyramid is trained alongside the
MLP. The system works as follows: First, the input coordinates are
used to sample the offset texture, then this value is concatenated to
the view direction and input into the offset MLP, which outputs a
depth used to calculate an offset using a traditional parallax tech-
nique. The offset is then used to sample the texture of the decoder,
which is then concatenated with view and light directions, and fed
into the decoder MLP, which outputs the final color.

This work investigates whether this method can be optimized
by improvements found in the field of neural scene representation.

https://orcid.org/0000-0001-8111-260X
https://orcid.org/0000-0001-7283-6403
https://traverse-research.github.io/NeuBTF/
https://doi.org/10.1145/3550082.3564188
https://doi.org/10.1145/3550082.3564188


SA ’22 Posters, December 06-09, 2022, Daegu, Republic of Korea Quartesan, et al.

Table 1: Overview of our ablation study in terms of quality (PSNR), memory (MB), and performance (it/s). PSNR is reported for
ten materials, the first five from the dataset provided in NeuMIP and the last five from UBO2014.

Configurations ↑ PSNR ↓ MB ↑ it/sSin Cat wool2 wool1 shell rock foam carpet07 carpet11 fabric01 leather08 leather11
1 ✗ ✗ 30.752 39.734 35.025 32.811 30.320 34.473 33.636 31.278 30.808 32.648 19.6 118.6
2 ✓ ✗ 33.022 43.113 37.679 34.524 32.430 35.459 34.588 32.353 32.598 33.892 19.6 111.6
3 ✗ ✓ 30.956 39.953 34.807 32.868 29.774 35.433 35.038 31.945 32.139 32.951 11.2 152.3
4 ✓ ✓ 33.178 42.549 37.237 34.073 32.158 36.704 36.283 33.234 33.030 34.600 11.2 140.7

2 METHOD
Wepropose two changes, supported by recent progress in the field of
neural scene representation. First, we replace the ReLU activations
with Sine as presented in Siren [Sitzmann et al. 2020] to improve the
quality of the output (Sin). Then we change the sampling strategy.
Rather than interpolating between the two closest mip levels, we
concatenate the samples at each mip level higher than the query,
as suggested in Instant-NGP [Müller et al. 2022], which we refer to
as Cat. This allows for neural textures with fewer channels since
the values are concatenated, resulting in larger input.

To estimate the impact of each proposed change, we performed
an ablation study and reported the results in terms of compression
quality using PSNR,memory inmegabytes (MB) and performance in
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑠𝑒𝑐𝑜𝑛𝑑

(it/s). Performance is collected in Python using a PyTorch
benchmarking tool on an NVIDIA GeForce RTX 3080 Ti, with an
input of 512𝑥512 pixels. This is provided as an approximation of
the impact of our changes on an optimized implementation that
should achieve a real-time frame rate on a larger input, as reported
in NeuMIP [Kuznetsov et al. 2021]. The quantitative results of the
ablation study can be found in Table 1.

We compared the results with two types of dataset: synthetic and
real captures. The synthetic dataset was provided privately by the
authors of NeuMIP [Kuznetsov et al. 2021], while the real dataset
is from UBO2014 [Weinmann et al. 2014]. A crucial characteristic
of the synthetic data from NeuMIP is its multi-scale nature. In
addition to different light and view combinations, this dataset is
also captured from a variety of distances. In Table 1 we report
results on a selection of five materials per dataset.

We use standard MLPs with two hidden layers, where each inter-
mediate layer has 32 output features. For the initialization schemes,
we follow the example of NeuMIP [Kuznetsov et al. 2021], while
when using Sin, we implement the strategy of Siren [Sitzmann et al.
2020]. The neural texture pyramid uses seven feature channels, but
when using Cat, we use only four channels.

We train up to 15,000 steps, which takes 15 to 30 minutes per
experiment. Each step is carried out with a batch of four; each
sample is 512 × 512 pixels, with different parameters of UV, light,
view and distance per pixel. The loss used is𝑀𝐴𝐸 + 10 ×𝑀𝑆𝐸, and
we use the Adam optimizer. Our implementation is in PyTorch,
while the renderings shown in Figure 1, are done in Mitsuba 2
[Nimier-David et al. 2019] with a custom BSDF plugin.

3 DISCUSSION
Although it is capable of reproducing the look of specular materials,
one limitation of this system is that it can behave only like diffuse
materials. This is because the dataset and the model do not address
the probability distribution of the possible directions of a ray after
hitting the material. Instead, a cosine-distributed hemisphere is
used, as suggested by NeuMIP [Kuznetsov et al. 2021]. Therefore, it
would be interesting to explore the possibilities of including support
for other types of probability distribution.

From our data, we can observe that the inclusion of Sin positively
increases quality, outperforming the baseline in all cases, while it
slightly decreases performance, because Sine is more expensive
than ReLU. The other change, Cat, significantly reduces memory
(× 0.57) and improves performance (× 1.25), due to fewer parameters
and fewer branching, respectively. In terms of quality,Cat performs
close to the baseline, sometimes exceeding it by a small margin,
in particular on the simpler data from UBO2014 [Weinmann et al.
2014], where all mip levels can be shared to represent a single
scale. Combining the proposed changes results in a model that
outperforms the baseline in all metrics evaluated.

ACKNOWLEDGMENTS
We thank Alexandr Kuznetsov for providing the code and dataset
from NeuMIP [Kuznetsov et al. 2021].

REFERENCES
Kristin J Dana, Bram van Ginneken, Shree K Nayar, and Jan J Koenderink. 1999.

Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1 (Jan. 1999),
1–34.

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi.
2021. NeuMIP: multi-resolution neural materials. ACM Trans. Graph. 40, 4 (July
2021), 1–13.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph. 41, 4 (July 2022), 1–15.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:
a retargetable forward and inverse renderer. ACM Trans. Graph. 38, 6 (Nov. 2019),
1–17.

Gilles Rainer, Abhijeet Ghosh, Wenzel Jakob, and Tim Weyrich. 2020. Unified neural
encoding of BTFs. Comput. Graph. Forum 39, 2 (May 2020), 167–178.

Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. 2019. Neural BTF
compression and interpolation. Comput. Graph. Forum 38, 2 (May 2019), 235–244.

Vincent Sitzmann, Julien N P Martel, Alexander W Bergman, David B Lindell, and
Gordon Wetzstein. 2020. Implicit neural representations with periodic activation
functions. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (Vancouver, BC, Canada) (NIPS’20, Article 626). Curran Associates
Inc., Red Hook, NY, USA, 7462–7473.

Michael Weinmann, Juergen Gall, and Reinhard Klein. 2014. Material classification
based on training data synthesized using a BTF database. In Computer Vision –
ECCV 2014. Springer International Publishing, Cham, 156–171.


	Abstract
	1 Introduction
	2 Method
	3 Discussion
	Acknowledgments
	References

